A Novel Functional In Vitro 3D iPSC-Derived Neuromuscular curi bio Junction Model for Investigating Botulinum Neurotoxin Activity and Neuromuscular Disease

Jacob Fleming¹, Kevin Gray¹, David Nash¹, Vincent Leung¹, Cameron Gelber¹, Mark Bothwell², Alec Smith², David Mack², Nicholas A. Geisse¹ (1) Curi Bio, Inc., (2) University of Washington

Preclinical Models Are Not Predictive

- Many compounds fail during clinical trials due to insufficient early detection of ineffectiveness in preclinical testing.
- Animal-based preclinical models often do not accurately represent human physiology.
- Pre-release potency testing of complex biologics is becoming increasing important and complex with many unsuitable for animal models.

Opportunity of 3D NMJ Models

- 3D models of the NMJ exist but none offer reliable and high throughput generation of functional tissues.
- 3D in vitro models incorporate extracellular matrix (ECM) and cell-cell interactions, improving the in vivo fidelity of in vitro tests.
- Functional outputs from tissues allow direct assays of disease phenotypes or toxin action making them directly suitable for preclinical testing or potency assays.

Our Objective – Demonstrate Utility

- Here, we present an iPSC derived model of the NMJ with controllable functional output and biologically relevant neurotoxin blockade.
- We show histological evidence of NMJs, important for many disease modelling applications.
- Furthermore, we demonstrate dose dependent loss of NMJ function in the presence of Botulinum toxin (BoT), acting as a proof of concept for a novel BoT potency assay.

Scalable and Simplified Creation of 3D NMJs

Add SkM Tissue to Neurosphere Casting Plate

Activate Neurospheres with Light to Drive **Muscle Contractions**

- In situ neurosphere creation removes need for direct spheroid handling.
- Blue light sensitive neurons allow specific activation of motor neurons independently of skeletal muscle.
- iPSC derived motor neurons and skeletal muscle.
- High success rate NMJ creation >95%.

- Easy rapid casting.
- Over 95% casting success rate.
- Label-free tracking of 24 tissues.
- Well-based e-stimulation of 24 tissues.
- Clinically-Relevant protocols.
- Automated metric extraction.

Functional Characterization of NMJs

Histological Characterization of NMJs

Baseline NMJ Function

Botulinum Toxin Blockade of NMJ Transmission

Baseline NMJ Function

Co-cultures exhibited elevated spontaneous contractions, compared to the relatively quiescent behavior observed in mono-cultured skeletal muscle tissues. Light-sensitive neurospheres were selectively activated in the coculture through 250 ms blue-light pulses, the skeletal muscle exhibited synchronized contractions within 100 ms of the applied light pulses. The contractile force of neuronally elicited contractions averaged 13.9±4.5% of electrical field stimulation of the bulk tissue (1 Hz, 100 mA, 10 ms biphasic). This demonstrates the ability to activate specifically the muscle tissue through the neuronal component.

Botulinum Toxin Blockade of NMJ Transmission

Research grade Botulinum Neurotoxin (BoT) complex A was added to culture media at 5 µg/mL, and the light-induced contractile response was measured across the following 4 hrs. Force was normalized to the control condition, with a reduction in function to 0.03±0.05% in BoT tissues after 4 hrs of treatment. Furthermore, a dose response curve was generated and an EC50 value of 0.114 µg (of BoT mass added) was determined following 24 h of exposure. Electrically-induced contractile force remained stable in both control and treated tissues following BoT treatment at all doses (data not shown). These data demonstrate that the NMJ co-culture tissues are sensitive to BoT synapse blockade and that this effect is **specific to the neuronal component**, as the skeletal muscle remains functionally competent.

Conclusions

Curi Bio has designed, built, and tested a functional human 3D model of the neuromuscular junction within its established Mantarray engineered tissue platform. We present this platform as a tool for preclinical drug discovery and potentially potency testing for biological products such as Botulinum neurotoxins.

Data presented within was supported by NCATS under award Contact Curi Bio number U44TR004795.

